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ABSTRACT 

We answer  a ques t ion  posed by R. Aron,  C. Finet  and  E. Werner ,  on the  

bilinear version of the  B i shop-Phe lps  theorem,  by exhibi t ing  an  example  

of a Banach  space X such tha t  the  set of no rm-a t t a in ing  bilinear forms on 

X • X is not  dense in the  space of all cont inuous  bilinear forms.  

I n t r o d u c t i o n  

In their celebrated paper  [B-P] E. Bishop and R. Phelps proved the by now 

classical result that  the set of norm attaining linear functionals on a Banach 

space is dense in the dual space. They also asked if the result still holds for 

operators. More concretely, is the set NA(X,Y) of norm-attaining operators 

between Banach spaces X and Y dense in the space L(X, Y) of all bounded 

linear operators? A great deal of attention has been ~)aid to this question over 

the last thir ty years (see [L], [B], [G] for example). 

In a forthcoming paper [A-F-W], R. Aron, C. Finet and E. Werner consider 

extensions of the Bishop-Phelps Theorem in a different, still very natural  direc- 

tion. Given a Banach space X,  let us denote by B(X) the space of continuous 

bilinear forms on X x X; let us say that  ~ r /~(X) attains its norm if there are 

xo, 7/0 E Bx (the unit ball of X)  such that  

Iv(x0 ,y0) i  = ti ll, 
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and let B~(X) denote the set of norm-attaining bilinear forms. 

The authors of [A-F-W] show that  Ba(X) is norm-dense in B(X) whenever Z 

satisfies the Radon-Nikodym Property or the so-called property a,  and deduce 

a quite general renorming result, but the question if B~(X) is dense in B(X) for 

an arbi trary Banach space X arises. Answering this question in the negative is 

the main purpose of this note. We show that  a Banach space used by W. Gowers 

in the study of norm-attaining operators works as a counterexample. Actually, 

with a slightly more involved construction, one can get a stronger result. We 

produce an example of a Banach space X such that  NA(X, X*) is not dense in 

L(X, X*) and it clearly follows that  Ba(X) is not dense in B(X). 
We also deal with the "quadratic" version of the Bishop-Phelps Theorem. The 

argument used in [A-F-W, Theorem 2] can be easily modified to show the density 

of norm-attaining quadratic forms on a Banach space with the Radon-Nikodym 

Property. As the reader will probably guess, we show that  this density does not 

hold for an arbitrary Banach space by using the same counterexample as in the 

bilinear case. This answers in the negative a question posed by P. Georgiev at 

the conference on Functional Analysis and Applications held in Gargnano (Italy) 

in 1993. 

Our results are valid in the real as well as in the complex case and we try to 

use a notation which covers both  cases. There is an open question concerning the 

complex version of the general Bishop-Phelps Theorem for nonbalanced sets (see 

[P] and [D-G-Z, Problem 1.4]). Nevertheless, when dealing with norm-attaining 

functionals or operators, only a balanced set (the unit ball) is involved and our 

discussion is unrelated to the above-mentioned problem. 

Let us start  by recalling the definition of the Banach space G used by 

W. Gowers to show that  I v fails Lindenstrauss' property B for 1 < p < er 

[G, Appendix]. 

Definition 1: For a scalar sequence x and n E N let us write 

1 / z  ) 
Cn(x) = ~ s u p  [x(j)]: J C N, [J[ = n 

n k j E  J 

n - 1  where IJI is the cardinality of the set J and Hn = ~ k = l  k . We will denote by 

G the Banach space of those sequences x such that  

lim r  = 0 
n - - ~ O O  
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with the norm given by 

Ilxll = sup{~(x):  n �9 N} (x �9 c)  

and (e,,} will be the unit vector basis of G. 

In the following lemma we recall the properties of the space G that will be 

needed below. 

LEMMA 2 (Gowers [G], see also [A-A-P]): 

(i) The unit ball o f  G lacks ex t reme points. In fact, for every x E G with 

[[x[[ = 1, there exist a natural number  m and ~ > 0 such t h a t / I x +  Aek [l = 1 

for k >_ m and any scalar A with [A[ _< 6. 

(ii) For I < p < oo, G is contained in I v and the formal ident i ty  from G into I v 

is a bounded operator. 

From property (i) we deduce the following: 

PROPOSITION 3: 

(i) I f  ~ is a norm-at taining continuous bilinear form on G x G, then 

~O(em, en) : 0 

for large enough m and n. 

(ii) f f a  continuous quadratic form Q on G attains its norm at  a point  xo E B e ,  

then 

O(xo)Q(~) < o 

for large enough n. 

Proof." (i) Let Xo, Yo be norm-one vectors in G such that 

Iv(x,y)l ~ Iv(xo, yo)J 

for all x, y in the unit ball of G, and using Lemma 20) , let ~ > 0 and N E N be 

such that 

Ilxo 4- SenH = llyo + $e,l[ = l (n > N) .  

For m _> N, from 

Iv(xo + ,~e,.,~o)l = I~(xo, yo) �9 ~ (em,  Yo)I < I~(Xo, Yo)t 
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and the strict convexity of the scalar field, we get that  

~(em, yo) = 0. 

An analogous argument shows that r en) = 0 for n >_ N. Then we have 

I~(xo + 5em,YO + 5en)l = I~(Xo, YO) + 52~(em,e~)l < I~(xo,Y0)l 

and again the strict convexity of the scalar field gives 

~p(em,e,~) = 0 (m ,n  >_ N) 

as required. 

(ii) Assume without loss of generality that  IIQII = Q(xo) = 1 and let r be the 

continuous symmetric sesquilinear form on G • G such that  

Q(x) = r  V x 6 G .  

As in the first part of the proof, let 5 > 0 and N 6 N be such that  

llxo + ~e~ll < 1, 

f o r n  > N and any scalar Awith  IAI < 5. By takingA = p p w i t h  I#1 = 1 and 

0 _< p _< 5, we have the inequality 

1 = Q(xo) >_ IQ(xo + ppe,~) I = I1 + 2pRe#r  e, 0 + p2Q(e,OI, 

hence 

(1) 2pRe#r  en) + p2Q(en) < o. 

Dividing by p and letting p --* 0 gives 

Re #r e~) _< 0, 

but this is true for any scalar # with I#1 = 1, so r en) = 0. It now follows 

from (1) that  Q(en) <_ 0 for n > N, as required. | 



Vol. 93, 1996 T H E R E  IS NO BILINEAR BISHOP-PHELPS T H E O R E M  225 

COROLLARY 4: The set I3~(G) of norm-attaining continuous bilinear forms on 

G x G is not dense in the space B(G) of all continuous bilinear forms. 

In view of Lemma 2(ii) we can define a continuous bilinear form on G x G Proo~ 

by 

r  = ~ x(n)y(n) (x, y E G). 

Since ~b(en, en) = 1 for all n, by taking a large enough n and using the above 

proposition we have 

11r - ~11 -> 1 

for arbi trary ~ E Ba(G), so r cannot be approximated by norm-attaining bilinear 

forms. | 

COROLLARY 5: There is a continuous quadratic form on G which cannot be 

approximated by norm-attaining quadratic forms. 

Proo~ Define 
oo 

Q0(x) = Ix(n)l 2 (x e a )  
n = l  

to get a continuous quadratic form on G. By using the fact that  Q0 is positive 

definite, one can easily show that  if a quadratic form Q attains its norm at 

x0 E B~ and Q is close enough to Q0, then Q(xo) >_ O. By the second part  of 

Proposition 3, Q(en) < 0 for n large enough, so IlQ - Q011 > 1. 1 

The question of the density of norm-attaining bilinear forms admits  a slightly 

different approach that  will allow an improvement of Corollary 4. Recall that  

for any Banach space X,  there is a natural  identification between 13(X) and the 

space L(X, X*). Under this identification, the bilinear form qa E B(X) becomes 

the operator T E L(X, X*) given by 

(T(x), y) = y) (x, y e X) .  

It  is clear that  T attains its norm whenever ~ does, but simple examples show that  

the converse is not true. Thus, we can consider that  13a(X ) is contained in the set 

NA(X,  X*) of norm-attaining operators. Our next result gives a procedure to 

get examples of Banach spaces X such that  NA(X,  X*) is not dense in L(X, X*) 

even less can Ba(X) be dense in B(X). 
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THEOREM 6: Let Y be a Banach space such that Y* is strictly convex and there is 

a noncompact operator from G into Y*. Consider the Banach space X = G 0 1 Y  

(direct sum in the ll-sense). Then N A ( X ,  X*) is not dense in L (X ,  X*).  

Proof  Let A E L(G, Y*) be noncompact and define an operator T from X into 

X* ~ G* @~ Y* by 

T ( z , y )  = (O,A(z)) (z E G, y E Y) .  

By [A-A-P, Theorem 1.4], A cannot be approximated by norm-attaining operators 

and a routine argument will show that  the same happens with T. Suppose, on 

the contrary, that  for any ~ > 0 there is S E N A ( X , X * )  such that  l i e -  T[[ < ~. 

Let P and Q be the natural  projections from X onto G and from X* onto 

Y*, respectively. Since QT = T we will have [[(Id-Q)S[[ < [[QS][ = [[S[[, 

provided that  e is small enough. It  follows easily that  QS attains its norm, but 

[[QS - T[[ < e, so we can suppose S = QS. On the other hand, we also have 

T ( I d - P )  = 0, so 

(1) IIS(Id-P)II < IlSll, 

again for small enough e > 0. 

For x E X with P x  ~ x, it follows that  

HSxI[ < IISPIIIIPxN + ]]S(Id-P)llllx - Px]l 

< IISI](]]Pxl] + fix - PxH) = IISHIIxI]. 

Therefore, if S attains its norm at a point xo E S x ,  then Pxo = xo and S P  also 

attains its norm at x0. 

Note finally that  

liSP - All = IIQSP - QTPI] < E, 

hence A can be approximated by norm-attaining operators, a contradiction. 

$ 

Examples 7: (a) By Lemma 2(ii) there is a noncompact operator from G into 

the strictly convex space lq = l~ (1 < p < r By the above theorem the space 

X = G G1 Ip is such that  N A ( X ,  X*)  is not dense in L(X,  X*).  
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(b) Actually, one can get the Banach space X in the previous theorem to be 

isomorphic to G. Since G is separable, there exists a Banach space Y isomorphic 

to G such that Y* is strictly convex (see [D-G-Z, Theorem II.2.6] for example). 

Moreover, there is a noncompact operator from G into G*, so Y satisfies the 

requirements in the above theorem, but this time X = G O1 Y is isomorphic to 

G. We do not know if NA(G,  G*) is dense in L(G, G*) for the original norm on 

G. 
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